
Copyright © 2005 - Globetech Solutions   

 Page 1 of 6 

Towards an IEEE P1500 Verification Infrastructure 
A Comprehensive Approach 

 
 

Iraklis Diamantidis 
iraklis@globetechsolutions.com 

Thanasis Oikonomou 
poisson@globetechsolutions.com 

Stylianos Diamantidis 
stelix@globetechsolutions.com 

Globetech Solutions, Thessaloniki, Greece 
 

Keywords: Embedded Cores, IEEE P1500, Verification, Infrastructure IP, Core Test 
 
 
 

Abstract 
Core-based design has quickly become today’s de-facto 

approach to building increasingly complex Systems-on-Chip 
(SoC). With the IEEE 1500 Proposal for a Standard for 
Embedded Core Test effectively addressing the important issues 
of reuse and interoperability with respect to testing core-based 
SoCs, as well as providing the infrastructure for building and 
operating testability features within cores from different 
suppliers, it has also become imperative to thoroughly verify the 
functionality of the complete test infrastructure within a certain 
SoC. In this paper we take a comprehensive approach to 
designing such a verification infrastructure based on a dynamic, 
constrained-random, coverage-driven verification methodology, 
which can be part of the overall chip-level validation strategy. 
We also present a powerful implementation of such an 
environment using a contemporary Hardware Verification 
Language, along with experiences from application on a typical 
verification scenario. 

1 Introduction 
Reuse is a key element to designing high-complexity 

Systems-On-Chip (SoC) within the time and performance 
limitations imposed by demanding market conditions. In this 
content reuse refers to the ability of introducing complete 
functions into an existing design by means of integrating pre-
designed, pre-verified, blocks of logic, most often termed to as 
embedded cores. According to Gartner Dataquest, an 
independent research firm, increasingly more and more designs 
will consume more and more embedded cores so that by 2007 
some SoCs will have surpassed 40 integrated cores and the 
Intellectual Property (IP) Core market will have doubled. 

Conversely, testing such large core-based designs has 
quickly become a major consideration in any chip-based product 
ecosystem. In a typical SoC environment, embedded cores are 
supplied by multiple, external, IP vendors, each applying 
different development and quality standards. Blocks procured 
from such suppliers could deploy anywhere from none to a wide 
range of testability features, summing up to a completely 
heterogeneous and, in some cases, unusable test infrastructure at 

the system level. The need for a standard test infrastructure has 
led to the development of a variety of efforts by both industrial 
and professional organizations. The IEEE 1500 Standard 
Embedded Core Test proposal, currently in the final stages of the 
IEEE standardization processes, comprises a comprehensive set 
of guidelines for building such an infrastructure, including the 
hardware architecture, information model (implemented in the 
IEEE P1450.6 Core Test Language proposal) and definitions of 
levels of compliance. 

In related previous work, a variety of publications [1] [2] 
have been presented on IEEE P1500 architecture and 
applications. The authors of [3] describe an approach of 
verifying 1149.1 (JTAG) logic using a combination of 
simulation of black-box checks and tracing. In addition, several 
others [4] [5] describe the work done on SoCs built with IEEE 
P1500 testability features. 

In this paper we proceed to first understand in more detail 
the underlying motivations for our work, claiming that thorough 
functional verification of IEEE P1500 wrappers and wrapper 
cores in an SoC environment is absolutely necessary. We then 
set forth our aims for what an environment used to verify this 
standard should support. 

2 Motivation 
In our work we represent that the growing demand for test 

infrastructure in cores and SoCs is quickly becoming subject to 
challenges faced elsewhere in the electronic design industry. 
One of the most significant challenges, the verification 
bottleneck arises from the combination of a variety of emerging 
conditions; design heterogeneity, large chip area, increasing 
complexity and poor interoperability are only a few. 

A complete set of challenges arise when considering the 
heterogeneous nature of today’s IP market. For the core 
developer, it is important to provide IEEE P1500- compliant 
wrapped or unwrapped (i.e. CTL-only) designs to facilitate 
customer integration into system-level test infrastructure. Core 
integrators on the other hand, need to ensure that IEEE P1500-
ready IP properly complies with the required functionality both 
at the standalone and system levels. Obviously there are several 
points in this process where design bugs can be introduced, 



Copyright © 2005 - Globetech Solutions   

 Page 2 of 6 

ranging from insufficient functional exercise of a wrapper by the 
IP vendor to cell library issues in the gate level model. 

Another set of challenges arise from the nature of the IEEE 
P1500 standard itself. The need to support as wide a range of 
embedded core test applications as possible has led to a very 
flexible and applicable solution. As described in [2], although a 
mandatory minimal set of hardware support is defined, a 
designer can extend the test infrastructure by creating virtually 
unlimited sets of register and instruction extensions [6]; such 
extensions can include Core Defined Registers (CDRs), i.e. 
chains that are embedded in the wrapped core and can be 
invisible to the integrator or Wrapper Defined Registers (WDRs), 
i.e. chains that are part of the Wrapper itself. Functionality 
provided by IP vendors in the form of CDRs and WDRs should 
be described in a CTL information model. However it is also 
subject to logic bugs due to improper and/or insufficient 
verification on the side of the provider. 

Finally, one can also claim that DFT generation tools do 
leave room for error at both the structural and functional ends of 
the design space spectra. Implementations of SoCs containing 
P1500 are bound to suffer from potential protocol deviations, 
most likely due to human error. Such deviations could render an 
embedded core or even, in the case of a chain of wrapped cores, 
a complete set of cores untestable. 

It is hence obvious that if an SoC includes IEEE P1500-
compliant cores, whether they are created in-house or sourced 
externally, wrapped or unwrapped, manually designed or 
generated, including minimal or extended IEEE P1500 features, 
complete and methodical verification of the IEEE P1500 test 
logic is a necessity. 

To better understand the methodology and environment 
deployed for creating such a verification tool, it is important to 
first understand what some of the core features that the 
environment needs to provide are, in order to properly embrace 
the IEEE P1500 standard: 

 
•••• Abstraction - Specifying vector stimuli at different layers 

of abstraction 
•••• Coreless Operation - The ability to verify a standalone 

wrapper 
•••• Layered Monitoring - Observing behavior in 

environments ranging from white-box to black-box 
•••• Functional Coverage Assessment - Measuring the extent 

of functional coverage that has been exercised in the 
system 

•••• Extensibility - Providing as much support for CDR/WDR 
extensions as possible without user input 

•••• Configurability - Ensuring that all configuration options 
within the standard can be satisfied 

•••• Reusability - Being able to apply the environment across 
providers, projects and abstraction levels 

3 Methodology and Environment 
All challenges arising from the requirements set in the 

previous section can be addressed with dynamic, constrained-
random, coverage-driven, functional verification methodology. 
By dynamic functional verification, input patterns are generated 
and applied over a number of clock cycles to the design and the 

corresponding result is collected and compared against a 
reference model for compliance with the specification. 
Functional coverage metrics quantify the functional space that 
has been covered by a test suite. Random dynamic simulation 
provides random stimulus to the design, maximizing the 
functional space that can be covered. Stimulus may also be 
constrained on demand to narrow the range of possible values 
making the tests more directed where needed (constrained-
random stimulus).  

3.1 Implementation technology 
For implementing the dynamic, constrained-random, 

coverage-driven functional verification methodology we 
deployed Verisity's e Hardware Verification Language1. e has 
built-in constructs for easily implementing dynamic constrained-
random stimulus generation, describing functional coverage 
goals and defining certain protocol and data checks to reveal 
possible bugs. It has also provided the basis for the proposal of 
upcoming IEEE P1647 functional verification language 
standard. 

The implemented verification environment has been 
structured as a single eVC™ (e Verification Component) 
architecture under the recommendations of eRM™ (e Reuse 
Methodology) [7]. An eVC can be seen as a plug-n-play, 
configurable verification environment, typically focusing on a 
specific protocol (e.g. P1500) that encompasses all necessary 
facilities for generation, checking and coverage analysis. The 
experimental simulations were carried out using SpeXsim™, 
which is a direct-kernel integrated verification platform and 
HDL simulator.  

3.2 Verification Environment 
Due to the nature of the P1500 protocol, the eVC is 

designed to be flexible and extensible from the beginning of 
development. This flexibility allows for the user to add user-
defined registers, instructions, checks and coverage items as well 
as enables future work. By design, the eVC is able to achieve 
those goals with the least amount of effort and the highest degree 
of reuse. 

3.2.1 eVC Modules 
The main verification module for the P1500 eVC is the 

Agent. An Agent performs Coverage Driven Verification (CDV) 
on a single P1500 wrapper, by driving input stimuli to the P1500 
wrapper, performing checks on its outputs and collecting 
coverage information based on those outputs. 

The components of the agent that realize CDV are discussed 
below (see Figure 1). 

                                                           
1 more information at http://www.verisity.com 



Copyright © 2005 - Globetech Solutions   

 Page 3 of 6 

3.2.1.1 The Sequence Driver 
This is the single user point-of-control for generating the 

input stimuli that will be passed to the verification environment. 
The sequence driver can generate input stimuli at three distinct 
levels of abstraction: 

 
1. P1500 event level  - Includes IEEE P1500 events 

{SHIFT_WIR, CAPTURE_WIR, UPDATE_WIR, 
  SHIFT_DR, CAPTURE_DR, UPDATE_DR} 

2. Transaction level – Includes complete transaction 
sequences, e.g. LOAD_INSTRUCTION 

3. Test level – Includes sequences of transactions, such as 
W_EX_TEST_S_SHIFT_TEST (for a discussion, 
please refer to Section 4.1.2) 

These abstraction levels and their relation to the signal level 
are depicted in Figure 2. Constrained-random generation is 
applicable on all three abstraction levels. This allows the 

verification engineer to identify corner cases using random 
generation, and then explore those corner cases using more 
constrained (directed) generation. 

The Sequence Driver also generates serial data on P1500 
shift events and parallel data on P1500 capture events, which is 
part of the input stimuli and then passed to the BFM (explained 
below) to feed a wrapper's serial and parallel inputs. 

3.2.1.2 The BFM 
This component acts as a Bus-Functional Model and is 

responsible for driving all required signals to any P1500 wrapper 
using the input stimuli and associated data generated by the 
sequence driver.  

3.2.1.3 The Monitor 
This component is responsible for monitoring an individual 

P1500 wrapper's input and output signals, thus identifying the 
low-level P1500 events, which it then forwards to its sub-
modules to perform checking and coverage collection as part of 
the CDV methodology. 

• Checker sub-module: Used to check the wrapper’s 
output signals. A number of checks are defined in the 
eVC that can be divided into two main categories: 

o Data Checks: Used for integrity checking 
o Protocol Checks: Used to confirm protocol 

adherence  
The eVC's extensible model allows for checks to be 
inherited in user-defined registers, to minimize effort 
and maximize reuse. 

• Coverage sub-module: Used to extract coverage 
information based on a wrapper's reaction to input 
stimuli. This information is based on coverage metrics, 
explained in detail under Section 4.2 below. 

3.2.1.4 The Reference Model 
This component models the structure and behavior of a 

P1500 wrapper. It uses information passed on by the monitor to 
update its internal state and keep an up-to-date model 
representation of a P1500 wrapper. Developed with extensibility 
in mind, the reference model can support in addition to the 
mandatory spec as defined in the P1500 standard: 

• Flexible register sizes 
• Arbitrary number and size of instruction opcodes 
• User defined, P1500 compliant instructions, registers, 

types of cells, cell isolation behavior and checks 
The critical entity in the reference model is the cell. All 

actions depend on the cell's configuration and behavior and this 
is how the reference model is able to demonstrate such great 
extensibility, modeling any P1500 wrapper cell. 

3.2.2 Supported Testing Scenarios 
The aforementioned extensibility facilitates the support of 

arbitrary P1500 wrapper structure and behavior, which in turn, 
allows for a plethora of testing scenarios that are common on 
applications of the P1500 standard. 

WSO 

WSI 

WSC 

 
 

Core 

WIR 

WBY 

AGENT 

 

CDR 

WDR BF
M 

MONITOR 

SE
QU

EN
CE

 D
RI

VE
R 

Checker Coverage 

 
REFERENCE 

MODEL 

Figure 1: Verifying an IEEE P1500 Wrapped Core with Core 
Defined Registers 

Figure 2: Vector generation at different levels of 
abstraction 

SelectWIR 

ShiftWR 

UpdateWR 

W_EX_TEST_S_SHIFT_TEST 

LOAD INSTRUCTION W_EX_TEST_S 

SHIFT 
WIR 

SHIFT 
WIR 

UPDATE 
WIR 

SHIFT 
WIR 

SIGNAL 
LEVEL 

ACTION 
SEQUENCE 

TRANSACTION
SEQUENCE 

TEST 
SEQUENCE 

Se
qu

en
ce

 D
riv

er
 

BF
M 



Copyright © 2005 - Globetech Solutions   

 Page 4 of 6 

Such testing scenarios involve the use of a wrapped or 
unwrapped core, mandatory or user-extended instruction and 
register set. The eVC also supports extended testing scenarios 
involving a chain of the aforementioned wrappers, or even a set 
of chains in system-level testing scenarios. 

Finally, “legacy” support is also supported in the eVC, as it 
can be configured to use JTAG (IEEE 1149.1) signals to drive 
control and data signals to a single, a chain, or a set of chains of 
P1500 wrappers with an embedded JTAG interface. 

4 Verifying IEEE P1500 Wrappers 
We now proceed to describe the process of verifying IEEE 

P1500-compliant wrappers based on CDV. 

4.1 Test Plan 
In this subsection we propose a test plan for verifying a 

chain of N P1500 wrappers (N ≥ 1), connected in a daisy-chain, 
through their mandatory serial TAM. In the test plan, whenever 
a shift event is issued, the eVC drives only the WSI of the first 
wrapper, since wrappers are connected in a chain. Whenever a 
P1500 event is issued, each reference model associated to a 
wrapper in the chain simulates the behavior of its wrapper by 
also “executing” the event. Thus, the checker of each wrapper is 
able to compare the values on WSO and register parallel outputs 
to the ones in the reference model and report potential 
miscompares. The test plan is realized by writing a set of tests 
(test suite) based on the environment presented in Section 3.2. 

4.1.1 WIR integrity test 
Since most tests require loading of instructions using the 

WIR of each wrapper it is good to first check the integrity of the 
WIR. There are two ways of writing a WIR: shifting in bits 
through its WSI and capturing bits through its optional parallel 
input. There is only one way of reading WIR contents: by 
shifting them out to WSO. Keeping in mind the above, we 
propose the following test sequences: 
WIR_SHIFT_TEST. Shift bits in from WSI and check if they 
are shifted out to WSO through WIR correctly.2  
WIR_CAPT_SHIFT_TEST. Have each WIR capture bits from 
its parallel input and then shift them out through WSO. 

4.1.2 Data Register integrity test per instruction 
Having verified WIR integrity for each wrapper we can 

proceed with testing data register integrity. As discussed in [1], 
each instruction is associated with a data register (i.e. the data 
register which connects WSI with WSO). However, each 
register (or part of it) can be used in more than one instructions, 
in each of which it may behave completely differently. For 
example, WBR is active for both W_EX_TEST_S and 
W_CORE_TEST_WS; however its cells face differently for 
                                                           
2 Consecutive shifts should have random length each time to check WIR 
behavior to small size shifts and also make sure all WIR cell values have been 
output by having large size shifts. This is also true for shift test sequences 
proposed for data register later, i.e. W_BYPASS_SHIFT_TEST and 
W_EX_TEST_S_SHIFT_TEST. 
 

each. Thus we’ll verify the integrity of each register in the 
context of each instruction used.  

The P1500 serial TAM is a one way path, beginning from a 
source and ending to a sink. There are no feedback loops. It is 
obvious that we can start by testing the instructions on the first 
wrapper. Once we verify its data registers’ integrity, we can load 
it with an instruction that puts it in a preferred state and proceed 
to the testing of the next wrapper in the chain, using the first one 
as a path for the second's scan data. Continuing this way we test 
the instructions of every wrapper in the chain, after verifying its 
previous ones operate correctly. 

For testing the Mth wrapper, M ≤ N, we should decide the 
instruction with which to load its previous M-1 wrappers. It's 
good if we use an instruction that only responds to SHIFT_DR 
events, ignoring CAPTURE_DR and UPDATE_DR events, 
because we want it just for passing scan data through the 
wrappers. Also, we'd like the instruction chosen to use the shift 
register with the smaller possible size so that we reduce the 
overhead bits added on the actual scan data thus reducing test 
simulation time. The mandatory instruction that has these two 
properties is W_BYPASS: responds to SHIFT_DR events only 
and uses WBY, the shift register with the smaller possible size3. 

The wrappers after the Mth one can be loaded with any 
instruction. This is because there are no feedback paths in the 
chain. But, for uniformity reasons we load them with the same 
instruction as the first M-1 ones (i.e. W_BYPASS). 

We now propose test sequences for some of the instructions 
defined by the IEEE 1500 Proposal. 

4.1.2.1 W_BYPASS integrity test 
When a wrapper is loaded with W_BYPASS, the data 

register connected between WSI and WSO is WBY which can 
only be shifted. So, we can define a test sequence like the first 
one for WIR described above: 
W_BYPASS_SHIFT_TEST. Shift bits in from WSI and check 
if they are shifted out to WSO through WBY correctly.1 

4.1.2.2 W_EX_TEST_S integrity test 
When a wrapper is loaded with W_EX_TEST_S, WSI is 

connected to WSO through WBR. WBR can be shifted with 
SHIFT_DR events. A CAPTURE_DR causes the input cells of 
WBR to capture their parallel functional inputs. UPDATE_DR 
causes the output cells of WBR to output their shift/capture stage 
contents to their parallel functional outputs, provided they have 
an update stage. So, WBR can be written and read with shifts. 
The input cells of WBR can be written by issuing capture events 
too. Finally, the output cells of WBR can be read by issuing 
update events too. We can test integrity of WBR in 
W_EX_TEST_S using all combinations of WBR reads and 
writes: 
W_EX_TEST_S_SHIFT_TEST. Shift bits in from WSI and 
check if they are shifted out to WSO through WBR correctly. 1 
W_EX_TEST_S_CAPT_SHIFT_TEST. Have WBR input 
cells capture bits from their parallel, functional inputs and then 
shift them out through WSO. 

                                                           
3 We expect that WBY will typically consist of 1 or 2 bits 



Copyright © 2005 - Globetech Solutions   

 Page 5 of 6 

W_EX_TEST_S_SHIFT_UPD_TEST. Shift bits in from WSI 
and get the respective ones out from the parallel, functional 
outputs of WBR output cells, by using the update event. If WBR 
output cells don't have update stage the update event is not 
necessary to be issued because shift/capture stage contents are 
always reflected to the cell outputs. 

4.1.2.3 P1500 optional and user-defined instructions 
integrity test 

The verification environment is capable of generating 
stimuli at three levels of abstraction: P1500 events, sequence of 
P1500 events, high-level tests. Any other instruction not 
described here, either proposed by the 1500 working group or 
user defined, can be tested using the data register approach we 
followed for the tests presented and the environment's powerful 
generation capabilities. 

4.1.3 Test suite 
We have created a test suite based on the test plan proposed. 

Tests have been implemented using a sequence library defined in 
the environment. The sequence library defines meaningful 
combinations of basic P1500 events to be sent to DUTs (e.g. the 
sequence of SHIFT_WIR’s and UPDATE_WIR events that load 
instructions to all wrappers in a chain). We will now proceed in 
defining interesting functional cover metrics by which we will 
evaluate the test suite, hence the test plan proposed, through two 
real-life application scenarios. 

4.2 Functional Coverage 
Functional coverage provides a metric of progress in the 

verification approach. It allows us to determine if tests exercise 
different parts of the design functionality and avoid running tests 
that do not contribute to the verification progress. Hence, 
functional coverage is a quality judge of the test plan. After 
applying the test suite to the DUT and analyzing functional 
coverage results, corner cases may be revealed that can lead to 
the design of new tests using altered generation constraints. 

We demonstrate a representative set of functional coverage 
metrics that can be used for measuring verification progress of 
black-box P1500 wrappers, i.e. wrappers for which we have no 
information on the way their cells and control logic have been 
designed and no observability of wrapper internal signals. It is 
obvious that the same metrics can be applied to white-box or 
partially white-box implementations. Of course, access to white-
box wrapper internal structures can lead us to the definition of 
more coverage metrics giving a better insight of the functionality 
that has been exercised by the tests. The extensibility feature of 
our environment allows us to define new coverage metrics a 
posteriori with little effort. Finally, the set is suitable to measure 
coverage in a multi-wrapper scenario, in which all wrappers are 
connected through their mandatory serial TAM in a daisy-chain 
way. Results will be represented on a per wrapper basis for 
metrics that may vary among wrappers. We now proceed to 
define a set of functional coverage metrics; this set should not be 
considered exhaustive: 
Instructions loaded [per wrapper]. The reference model is 
capable of discovering which instruction will be loaded to its 

wrapper upon each UPDATE_WIR event. In a multi-wrapper 
scenario, the instructions loaded vary among the wrappers so 
information is gathered on a per wrapper basis. This metric will 
help us discover if there are untested instructions in any wrapper. 
Instruction transitions [per wrapper]. The coverage collector 
of our environment is capable of recording previous and present 
values of the metrics defined. In the case of instructions, upon an 
UPDATE_WIR event, the coverage collector also remembers 
the previous instruction loaded and provides us with a list of 
instruction pairs that were loaded one after the other. This 
transition metric will help us answer questions like: have we 
loaded all possible instructions after W_BYPASS to a wrapper? 
P1500 events applied. P1500 events are caught by the 
environment's monitor and coverage information is unique for 
all wrappers in the chain. This is because wrappers connected in 
a daisy-chain way, using the mandatory serial TAM, share the 
same control lines of the TAM. This metric helps us discover if 
we have applied all possible P1500 events to the wrappers. 
P1500 event transitions. Using the coverage collector's 
capability of recording metric transitions we cover all possible 
transitions of P1500 events. Again, this metric is unique for all 
the wrappers in a chain. We can hence answer questions like: 
have we applied all P1500 events after a CAPTURE_DR? 
Instructions × P1500 events [per wrapper]. Another feature of 
the environment's coverage collector is the ability to cross two or 
more metrics. We thus implemented the cross coverage metric of 
instructions and P1500 events per wrapper. Notice that in a 
multi-wrapper scenario this cross metric has to be presented on a 
per wrapper basis since the instructions metric varies per 
wrapper. This metric will help us discover if all P1500 events 
have been tested for each instruction loaded on every wrapper. 

4.3 Application Testing Scenario 
We will now present the results of application testing under 

a typical dual-wrapper chain configuration scenario. Our aim is 
to illustrate the effectiveness of CDV, by applying coverage 
results obtained in early simulations to tune our input stimuli. 

The scenario includes two P1500 wrappers connected in a 
daisy-chain (see Table 1 for wrapper characteristics). The WBR 
topology for both wrappers is defined as WSI → WBR Input 
Cells → WBR Output Cells → WSO for simplicity. The 
instruction set used is {W_BYPASS, W_EX_TEST_S, 
W_CORE_TEST_WS, W_PRELOAD_S}. WSI of wrapper A is 
driven by the eVC, while WSI of wrapper B is driven by WSO 
of wrapper A. The eVC drives the wrappers’ parallel inputs and 
also provides clock and reset signals. 

 
 

Table 1: Wrapper Configuration for Application Scenario 

Register Wrapper A Wrapper B 
WIR 5 cells 4 cells 
WBY 1 cell 2 cells 
WBR 100 cells* 

50 I/P - 50 O/P 
70 cells* 

40 I/P - 30 O/P 
*All WBR cells have an update stage 



Copyright © 2005 - Globetech Solutions   

 Page 6 of 6 

4.4 Coverage Results and Test Suite 
Evaluation 

After running the test suite implementing test plan of 
Section 4.1 on the testing scenario earlier presented, we got 
functional coverage results and analyzed them. We discuss 
results on the metrics defined in Section 4.2 below.  

The “Instruction loaded per wrapper” coverage metric (not 
presented here) has shown that all instructions have been loaded 
to both wrappers. Table 2 shows the results from coverage 
metric “instruction transitions per wrapper”. Hits per wrapper 
are presented in the two columns named Hits (initial). Observe 
that not all instruction transitions have taken place, as shaded 
cells indicate. This is because W_BYPASS, UNSUPPORTED 
and only one of the rest instructions are loaded in a wrapper 
throughout a certain test. So, for example, we haven't been able 
to test the behavior of wrapper A when moving from 
W_EX_TEST_S to W_CORE_TEST_WS in the same test run. 

The third metric, “P1500 events” (not shown here), 
indicated that all P1500 events have been issued. However, the 
fourth metric, “P1500 event transitions” (not shown here), 
revealed that not all P1500 events have been observed. This 
metric is closely related to the functionality of the WIR decoder 
which seems to have not been covered enough as the holes in the 
metrics reveal. 

 
Instruction Transitions Hits (initial) Hits (new) 

Previous Next Wr A Wr B Wr A Wr B 
W_BYPASS 133 139 346 695 
W_EX_TEST_S 1 0 26 9 
W_CORE_TEST_WS 1 1 32 5 
W_PRELOAD_S 1 1 23 8 

W_BYPASS 
 

UNSUPPORTED 139 152 166 168 
W_BYPASS 1 0 25 2 
W_EX_TEST_S 92 76 119 90 
W_CORE_TEST_WS 0 0 15 10 
W_PRELOAD_S 0 0 20 9 

W_EX_TEST_S 
 

UNSUPPORTED 0 0 21 4 
W_BYPASS 1 0 27 7 
W_EX_TEST_S 0 0 19 6 
W_CORE_TEST_WS 78 85 103 97 
W_PRELOAD_S 0 0 8 8 

W_CORE_TEST_WS 
 

UNSUPPORTED 0 0 21 3 
W_BYPASS 0 0 19 15 
W_EX_TEST_S 0 0 14 6 
W_CORE_TEST_WS 0 0 16 6 
W_PRELOAD_S 77 66 111 76 

W_PRELOAD_S 
 

UNSUPPORTED 1 0 21 6 
W_BYPASS 138 150 174 161 
W_EX_TEST_S 0 1 22 6 
W_CORE_TEST_WS 0 0 12 4 
W_PRELOAD_S 0 0 19 9 

UNSUPPORTED 
 

UNSUPPORTED 131 123 163 132 

Table 2: Functional Coverage – Cumulative Instruction Transitions 
per Wrapper 

In order to cover holes that the coverage analysis revealed 
and increase the number of random resets, we designed a new 
test which performs the following: 
INSTR_REGRESSION_TEST. For every wrapper in the 
chain: 

• it loads its previous and next wrappers with 
W_BYPASS and then repeatedly 

� loads current wrapper with a random instruction 
and 

� issues random number of sequences of random 
P1500 events 

• also, at random intervals it resets the chain of wrappers. 
After running this test and aggregating coverage reports 

from this and the initial test suite, we got the results shown in the 
Hits (new) column. Observe that we managed to hit every 
uncovered case that the initial test suite did not. Metrics not 
shown in tables have also increased their hits and in the case of 
“P1500 transitions” all uncovered combinations have been also 
hit. 

5 Conclusions 
In this paper, we presented the need for deploying advanced 

verification methodologies in contemporary SoCs. The IEEE 
P1500 Standard for Embedded Core Test provides a solid test 
infrastructure for such SoCs, enhancing reusability and 
interoperability of complete core. 

In our approach, we described a comprehensive verification 
environment for IEEE P1500-based test infrastructures 
implemented as an eVC under Verisity’s SpeXsim platform. The 
environment employs techniques such as constrained-random 
vector generation, automated checking and coverage-driven 
verification to be able to fully verify such infrastructures under 
virtually any configuration. Combined with a well defined 
verification strategy and test plan, this approach offers clear 
advantages over traditional testbenches, illustrated by the 
functional coverage measurements obtained on a typical IEEE 
P1500 chain verification scenario. In addition, the environment 
can be reused across levels of design abstraction and project 
flows. 

References 
[1] E. J. Marinissen, R. Kapur, M. Lousberg, T. McLaurin, 

M.Ricchetti, and Y. Zorian, "On IEEE P1500's Standard for 
Embedded Core Test," Journal of Electronic Testing, vol. Theory 
and Applications, pp. 365-383, 2002. 

[2] Y.Zorian, E.J.Marinissen, and S.Dey, "Testing embedded-core 
based system chips," presented at ITC - International Test 
Conference, 1998. 

[3] K. Melocco, H. Arora, P. Setlak, G. Kunselman, and S. Mardhani, 
"A Comprehensive Approach to Assessing and Analyzing 1141.1 
Test Logic," presented at ITC - International Test Conference, 
Charlotte, NC, USA, 2003. 

[4] S. Picchiottino, M. Diaz-Nava, B. Foret, S. Engels, and R. Wilson, 
"Platform to Validate SoC Designs and Methodologies Targeting 
Nanometer CMOS Technologies," presented at IP/SoC, Grenoble, 
France, 2004. 

[5] T. McLaurin and S. Chosh, "ETM10 Incorporates Hardware 
Segment of IEEE P1500," IEEE Design & Test of Computers, pp. 
8-13, 2002. 

[6] D. Appello, F. Corno, M. Giovinetto, M. Rebaudengo, and M. S. 
Reorda, "A P1500 Compliant BIST-Based Approach to Embedded 
RAM Diagnosis," presented at 10th Asian Test Symposium 
(ATS'01), Kyoto, Japan, 2001. 

[7] e Reuse Methodology Manual: Verisity, 2003. 


