
MULTIPLE INTERFACE CROSSCHECKING
IN A SINGLE eVC ARCHITECTURE

by

Aggelos Ioannou, Thanasis Oikonomou, Stylianos Diamantidis

Globetech Solutions

ABSTRACT: An eVC™ architecture is commonly used testing each interface separately, but also a better
to verify a single interface of a device and to confirm that it representation of data flow and overall functionality. This
complies with a particular set of protocol rules. However, article offers solutions to the challenges that arise in
architecting eVCs solely for single-interface verification multiple interface crosschecking and presents useful
can be limiting for certain types of applications and practices for this type of eVC-based verification
devices. Instead, a number of interesting benefits can be architecture. Furthermore, the discussion is supported by
realized when deploying eVCs for verification across an example of a commercially available eVC which
multiple interfaces, e.g. egress and ingress port of a implements cross-checking between two dist inct
design. By architecting an eVC for multiple interface interfaces.
cross-checking, one can harness a powerful verification
environment that encapsulates not only the efforts of

A variety of e Verification Components exists today interfaces which, although not exhaustively defined
catering to a multitude of industry standard protocols and themselves, still need to adhere to some higher level
interfaces. As verification requirements grow more and protocol that can be quantified. For example, take a

2more demanding, eVCs offer a great means of device with two interfaces , say a network device with an
encapsulating verification experience, hence reducing ingress and an egress port; such a device can have both
effort and time spent while increasing quality and its interfaces built on some well defined protocol
completeness. Such eVCs typically focus around single specifications. For such devices there are many benefits
interfaces which provide a certain functionality or if an eVC was to exercise the functionality on multiple
connectivity to a device or system under test (DUT). sides. Implementing this type of operation in an eVC
Modules that comprise the eVC environment are then would not only give us the ability to check each side
used to inject input stimuli (drivers) or observe and check separately, but would also provide us with the power to
traffic (monitors). In this configuration, an eVC checks incorporate checking of the device's functionality itself,
that all traffic adheres to the underlying protocol as well drastically expanding our verification coverage.
as that all data goes through checkpoints correctly. DUTs
can this way effectively be verified against interface This paper presents several benefits that result from
behavior. But how about the DUT itself? deploying such an eVC architecture for device-level

verification. In addition we discuss some of the
Although using eVCs for interface (or bus) compliance challenges that arise in this type of architecture and
can provide us with a lot of information about the proper suggest some solutions. The discussion is supported by
workings of a device that encompasses such an brief examples taken from an already commercially
interface, there is still a lot of valuable information that we available eVC that incorporates multiple interface support
could gather were we to take a step back and quantify and cross-checking.
interface-to-interface relationships across the device.
There are many devices that are built on specifications
that have more than one well defined interface or even

INTRODUCTION

1
2 Hereon, the number two will be used for the ease of description when describing methodologies for crosschecking.
 Scaling to more than two interfaces can be understood intuitively.

e and eVC are trademarks of Verisity Inc.

A number of interesting benefits can be realized when
incorporating multiple interface cross-checking in an eVC.

A multiple interface coverage approach can result in more
complete protocol checks. In many cases protocol rules
are not only related to separate interfaces, but also
include other information such as timing, etc., that depend The first advantage lies in the fact that the user is allowed
on the combined behavior of the device. With such rules to capture interface-to-interface data interdependencies.
specified, one can incorporate checks that have to do with Such interdependencies can be quantified in the eVC
this combined behavior. In addition, note that in most environment and create a basis for several
cases, combining these types of checks reveals the most comprehensive checks. As device protocol is being
important and complex functionality of a given device. Of followed, the eVC, which has access to the interfaces, can
course, single interface rules that have to do with verifying check data flow even in such cases where the data are not
each of the interfaces separately will also be incorporated just steered unmodified to the output. Furthermore,
so that the offered environment can provide the complete mechanisms can be deployed that check the data flow
range of error checking necessary.itself through the device to be tested.

Consider an example of a device that produces interrupts Consider an example of a network interface subsystem
through one interface as a result of traffic on another transferring data between an embedded processor and a
interface. The entire interrupt activation protocol can be network link. The checking capabilities of the verification
highly complex due to the fact that it represents a environment of a DUT like this can be greatly enhanced if
significant part of the device's functionality and thus the eVC can observe both the processor bus and the
deserves much attention. This type of testing is only network link. One can design such an eVC to be able to
possible in an eVC environment which provides access to observe arbitrary data flows through the device, whether
both interfaces simultaneously. generated by an e stimuli driver, or another component

including a processor DUT.

Time savings and improvements in quality are additional
advantages to designing eVCs based on multiple
interface cross-checking as opposed to using a separate Being able to describe device-level data flow completely
verification environment for each interface.can allow relieving stimuli drivers from supporting data

checking. In a verification environment, data checking
B� y using a single eVC, the user will typically minimize would mainly be based on a scoreboard which would
the effort of having to set up multiple environments for reside on the input drivers and output collectors (i.e. the
each of the interfaces, including additional glue logic so called stubs). However, in an eVC that can monitor
and other overhead.device-level data flow, the user should be able to drive
Being able to translate device-level transactions in data in a variety of ways while simultaneously supporting
the form of checks allows users to better translate the all of the checking functionality. Multiple interface eVC
specification of the device into checks, hence creating architecture achieves this by collecting data flow
more effective verification test cases.information on the interface level while at the same time

� T� he incorporation of cross-checking results in a more being independent of the drivers. The design-level data
complete verification environment by adding flow then becomes a feature that can easily be used when
functionality that would otherwise be omitted and deploying such an eVC.
almost impossible to be later introduced and covered.

� A� bstracting data flow checking out of the driving logic For some devices, such as data-steering DUTs which
makes it easy to use the eVC's monitoring capabilities could also perform on-the-fly operations to data such as
in different verification scenarios. For example, a data encapsulation or modulation, data-flow checking alone
driver can be replaced by another DUT in an SoC can be very powerful. Even errors that do not directly
environment which would provide data stimuli to the have to do with the data flow can cause data
DUT covered by the eVC. This would still offer the dissimilarities and hence can be revealed. Of course,
same data-flow checking coverage, much the same there are other more focused checks that can provide the
as in the standalone DUT verification case.exact origin of the error for each specific case.

Better Protocol Checking

Interface-to-Interface Data Interdependencies

Time, Effort and Quality Gains
Device-Level Data Flow Independent of
Stimulus Driving

�

�

BENEFITS OF MULTIPLE I/F CROSSCHECKING

When designing an eVC for multiple interface coverage, a The presence of multiple clocks is one main issue that can
number of interesting challenges arise. In this section, we lead to added complexity. Each interface can use a
describe some of these challenges and present different clock, and furthermore, these clocks may not be
suggested solutions. We also illustrate examples based synchronized. It is also possible that their relative
on the UART eVC; this is a commercially available eVC frequencies are not constant, changing between different
that incorporates two interfaces, specifically a generic simulation runs or even during the same run. The
processor side interface and a serial network side following is an example of a check that employs events
interface, and hence deploys many of the techniques from two clock domains. It originates from the UART eVC
offered in this discussion. where an interrupt must be asserted by the DUT to the

processor side immediately after the last datum is
transmitted by the DUT to the network side (indicating
empty space inside the DUT's FIFO).

Checking multiple interfaces is the first challenge
encountered when designing a multiple interface eVC. In
order to accommodate the significant increase in
complexity, checks should encompass more complicated
functioning procedures which can include signals from
more than one interface in order to be described and
verified. Such checks can use signals from a certain
interface, extract the control stimuli injected, and then
check that another interface responds in the expected
way. Consider an example in the context of the UART Highlighted event, last_THR_xmitted, is emitted
eVC: whenever the last datum leaves the DUT for the network

side. This event is synchronized to baud_clk. However,
the processor writes data to the DUT's Tx FIFO using a
different clock, xin_clk. baud_clk's period is a
multiple of xin_clk's period. The multiplier is
configurable through a DUT register and can change at
any time, thus configuring DUT's transmission speed.
Highlighted event, new_THR, is synchronized to
xin_clk and is emitted every time a new datum is written
to DUT's Transmitter Holding Register (THR - actually In this example, when a packet is received from the
DUT's FIFO) by the processor.network interface and the FIFO trigger level is reached,

the result should be the activation of a specific kind of
Another issue having to do with timing is that some interrupt to the processor. This check incorporates events
aspects of the internal device protocol are important and that are associated with signals both from the network
should be included in the eVC's checks. However, their interface (packet received) and the processor interface
timing is a superset of a set of simpler timings. The eVC (interrupt), as well as some internal protocol
should in such cases rely on a set of cross delays. Such requirements.
delays can be used to provide the needed checking
capability in a hierarchical manner and allow the user Writing these types of checks can be very complicated
more flexibility in setting their boundaries. To illustrate a and therefore, eVC designers should pay special attention
cross delay we provide another check from the UART eVC to the checks needed for the protocol of the device being
example. As a hint, note that when a processor writes a verified. Designers should make sure that the protocol
specific register to the UART with a character, the device rules translated into e-language checks are described
starts transmitting this character after a while.exactly and exhaustively so that they do not collide with

other protocol aspects. Otherwise, the result could be the
signaling of DUT errors by the eVC that do not actually
occur or, even worse, the omission of significant protocol
errors.

Another challenge of multiple interface cross-checking
Event new_THR has been introduced in the previous relates to timing; one of the most important items to be
example. Event start_bit_xmitted is emitted verified. An eVC that incorporates multiple interfaces can

work with cross-timing checks, that is, checks that refer to whenever the first bit of a character is transmitted. As you
timing constraints among different interfaces. The rules can see, we have delay tolerance of 0 to 13x16
that check these constraints can be very complicated as baud_clk cycles between the time THR is written and the
they are based on the protocol followed internally by the actual transmission takes place to account for intra-
device, as well as the protocol of each interface. device delays.

Multiple Interface Protocol Rule Checking

Timing of Checks

CHALLENGES & SOLUTIONS

 expect {@net_packet_received;
 true (received_items >= trigger_level() and
 (trigger_interrupt == ENABLED));} =>
 {[..2]; @intr_assr;} @rclk_clk
 else
 dut_error("Intr was not activated although Received ",
 "Data are available and the corresponding ",
 "interrupt is activated";

 expect @new_THR => {[..13*16]; @start_bit_xmitted} @baud_clk
 else dut_error("THR was written by the processor but no ",
 "transmission followed");

 expect {@last_THR_xmitted and
 true(THR_interrupt == ENABLED);} =>
 {[..8]*not @new_THR; @intr_assr;} @baud_clk
 else
 dut_error("Interrupt was not asserted, although ",
 "THR became empty and THRE interrupt ",
 "was enabled");

Implementation Dependencies In Figure 1 below, the idea of event queuing is graphically
illustrated. The monitor expects some events to happen
on interface A, while in parallel, it creates the expected When designing a general application eVC, especially
events with its own logic for comparison. These events one that encapsulates device functionality across multiple
are produced according to the stimuli of protocol B and interfaces, the designer must always make sure that the
the related DUT protocol. However, instead of advancing final solution is DUT implementation-independent. Such
in a lock-step fashion, the events are now kept in FIFOs. dependencies can arise when checking timing aspects of
In this way, if a series of events are delayed due to the internal device protocol where the timing is not tightly
implementation differences, the FIFO absorbs these restrained. Techniques should then be applied that relieve
delays leading to correct checking information for the any possible implementation differentiations.
user.

One technique that can be deployed is the use of time
slacks. The eVC can have some time periods defined
within which an event is valid. In order to treat different
DUT implementations properly, time slacks can be
incorporated into the checks that concern complex
protocol aspects. These definitions also need to be
external and provide users the capability of fine-tuning
their environment by constraining time slacks in a manner
that best matches their DUT implementation. Below is an
example that shows this technique, again from the UART
eVC domain. To better understand the check, note that a
UART DUT should issue an interrupt to the processor
when there has been an error in the network reception line

Figure1: Checkpointing events from separate interfaces inside the and this interrupt source is enabled. LSR (Line Status
monitor

Register) is the register that holds reception errors and
IER is the Interrupt Enable Register.

In the context of the UART eVC, this queuing of events
can be implemented as follows:

Event LSR_copy_ch is emitted whenever the eVC
internal copy of LSR changes. Checking whether there
has been a reception error is done by checking LSR
internal copy's bits [4:1]. However, there is no way to be
certain that the value of LSR[4:1] inside the DUT is the
same as the eVC's internal copy at every rclk_clk cycle
because the cycles at which the DUT changes the LSR
are implementation-dependent. However, there are
cycles at which LSR[4:1] is stable and known. We refer to
these cycles as stable states. A good example of a stable
state is the time margin between a "few" cycles after
reception of a network datum has finished and the cycle at
which a new reception starts. The monitor inspects the
network interface and decides on the stable state validity.
The amount "few" can be set to a number large enough to In the above fragment of code, the monitor checks that the
account for every possible implementation. LSR bit 2 (parity error) is correctly produced by the DUT.

The check is performed only when both the DUT and the
Another technique that can be deployed is queuing of monitor are synchronized. The reset method for the LSR
events. Some events should be expected in relation to that follows maintains the same principle; resetting the
other events. However, if the timing of such events is bits only when in synchronization, otherwise keeping
based on loose protocol aspects, the eVC monitor can them unchanged for the next check.
queue them and compare them when a secure
checkpoint is reached. This queuing can happen either for
events received by the DUT or even for events that the
monitor produces which will be used for comparison with
those of the device.

 expect {@LSR_copy_ch;
 true((LSR_copy[4:1] != 4'b0000) and
 (IER_copy[2:2] == 1'b1) and
 (stable_state == TRUE)); [10]; } =>
 detach({@intr_assr; ~[2..20]}) @rclk_clk
 else
 dut_error("LSR indicated an error, the corresponding ",
 "interrupt is enabled, but no interrupt was ",
 "issued");

Monitor

LogicChecker

i/f A DUT i/f B

 on PROC_LSR_READ {
 if(stable_state == TRUE) {
 if (Monitor_Received_Data_Ready == TRUE) {
 if(Dut_Received_Data_Ready == TRUE)
 check that DUT_LSR[2:2] == MONITOR_LSR[2:2]
 else
 dut_error("The Overrun Error signaled ",
 "in LSR is not correct");
 };
 };
 };

 if(DUT_LSR[0:0] == 1'b1 and MONITOR_LSR[0:0] == 1'b1){
 // if DUT has not received data_ready,
 // the MONITOR_LSR[4:1] will not be reset,
 // and so the flags will be used on the next
 // LSR read. Another benefit of this method
 // is that even slight timing differences
 // for LSR[4:1] reset, between the DUT and
 // monitor, won't be able to result to error.
 MONITOR_LSR[4:1] = 4'b0000;
 };

Data Flow Checking necessary to perform data flow checking. However,
constructing such an unusual scoreboarding scheme can
be quite complicated due to the large range of Another challenge of constructing an eVC for a design
requirements already set forth in our discussion.that incorporates several interfaces is the difficulty in

dealing with data flow checking. A common practice when
The following figures depict two options for scoreboard verifying a design is the use of scoreboarding inside the
placement with respect to the UART eVC. In Figure 2, the drivers/collectors (stubs). However, in a multiple interface
conventional way is reflected with the scoreboard being eVC, it is crucial to maintain the independence and
updated immediately by the drivers. The items generated scalability of the stimuli drivers. This allows for user
are added to the scoreboard and once received, a check extensions or even complete replacement without
is performed. However, in order to avoid driver-degrading or even removing the data and protocol
dependency, the UART eVC deploys the second checking capabilities of the environment.
alternative as depicted in Figure 3. In this solution, the
monitor that stands on the interface gathers the items A solution that offers more flexibility is a scoreboarding
transmitted at each side and examines each transaction scheme that resides in the monitor. In this way, the eVC
independently. The scoreboard can then remain active environment is able to gather the data flow on the
even in the absence of the drivers or when modifications interface level and thus be completely independent of the
are made inside the drivers by the UART user.drivers. This can be achieved because a single eVC deals

with all interfaces and so has access to all the information

UART
DUT

i/f A i/f BProcessor
Driver

Data Flow Checking necessary to perform data flow checking. However,
constructing such an unusual scoreboarding scheme can
be quite complicated due to the large range of Another challenge of constructing an eVC for a design
requirements already set forth in our discussion.that incorporates several interfaces is the difficulty in

dealing with data flow checking. A common practice when
The following figures depict two options for scoreboard verifying a design is the use of scoreboarding inside the
placement with respect to the UART eVC. In Figure 2, the drivers/collectors (stubs). However, in a multiple interface
conventional way is reflected with the scoreboard being eVC, it is crucial to maintain the independence and
updated immediately by the drivers. The items generated scalability of the stimuli drivers. This allows for user
are added to the scoreboard and once received, a check extensions or even complete replacement without
is performed. However, in order to avoid driver-degrading or even removing the data and protocol
dependency, the UART eVC deploys the second checking capabilities of the environment.
alternative as depicted in Figure 3. In this solution, the
monitor that stands on the interface gathers the items A solution that offers more flexibility is a scoreboarding
transmitted at each side and examines each transaction scheme that resides in the monitor. In this way, the eVC
independently. The scoreboard can then remain active environment is able to gather the data flow on the
even in the absence of the drivers or when modifications interface level and thus be completely independent of the
are made inside the drivers by the UART user.drivers. This can be achieved because a single eVC deals

with all interfaces and so has access to all the information

UART
DUT

i/f A i/f BProcessor
Driver

Data Flow Checking necessary to perform data flow checking. However,
constructing such an unusual scoreboarding scheme can
be quite complicated due to the large range of Another challenge of constructing an eVC for a design
requirements already set forth in our discussion.that incorporates several interfaces is the difficulty in

dealing with data flow checking. A common practice when
The following figures depict two options for scoreboard verifying a design is the use of scoreboarding inside the
placement with respect to the UART eVC. In Figure 2, the drivers/collectors (stubs). However, in a multiple interface
conventional way is reflected with the scoreboard being eVC, it is crucial to maintain the independence and
updated immediately by the drivers. The items generated scalability of the stimuli drivers. This allows for user
are added to the scoreboard and once received, a check extensions or even complete replacement without
is performed. However, in order to avoid driver-degrading or even removing the data and protocol
dependency, the UART eVC deploys the second checking capabilities of the environment.
alternative as depicted in Figure 3. In this solution, the
monitor that stands on the interface gathers the items A solution that offers more flexibility is a scoreboarding
transmitted at each side and examines each transaction scheme that resides in the monitor. In this way, the eVC
independently. The scoreboard can then remain active environment is able to gather the data flow on the
even in the absence of the drivers or when modifications interface level and thus be completely independent of the
are made inside the drivers by the UART user.drivers. This can be achieved because a single eVC deals

with all interfaces and so has access to all the information

UART
DUT

i/f A i/f BProcessor
Driver

check add

Monitor

Scoreboard

Network
Driver

Figure 2: Implementing a device-level integrated scoreboard; data is added/checked by the stimuli drivers

Data Flow Checking necessary to perform data flow checking. However,
constructing such an unusual scoreboarding scheme can
be quite complicated due to the large range of Another challenge of constructing an eVC for a design
requirements already set forth in our discussion.that incorporates several interfaces is the difficulty in

dealing with data flow checking. A common practice when
The following figures depict two options for scoreboard verifying a design is the use of scoreboarding inside the
placement with respect to the UART eVC. In Figure 2, the drivers/collectors (stubs). However, in a multiple interface
conventional way is reflected with the scoreboard being eVC, it is crucial to maintain the independence and
updated immediately by the drivers. The items generated scalability of the stimuli drivers. This allows for user
are added to the scoreboard and once received, a check extensions or even complete replacement without
is performed. However, in order to avoid driver-degrading or even removing the data and protocol
dependency, the UART eVC deploys the second checking capabilities of the environment.
alternative as depicted in Figure 3. In this solution, the
monitor that stands on the interface gathers the items A solution that offers more flexibility is a scoreboarding
transmitted at each side and examines each transaction scheme that resides in the monitor. In this way, the eVC
independently. The scoreboard can then remain active environment is able to gather the data flow on the
even in the absence of the drivers or when modifications interface level and thus be completely independent of the
are made inside the drivers by the UART user.drivers. This can be achieved because a single eVC deals

with all interfaces and so has access to all the information

UART
DUT

i/f A i/f BProcessor
Driver

check add

Monitor

Scoreboard

Network
Driver

Figure 2: Implementing a device-level integrated scoreboard; data is added/checked by the stimuli drivers

Data Flow Checking necessary to perform data flow checking. However,
constructing such an unusual scoreboarding scheme can
be quite complicated due to the large range of Another challenge of constructing an eVC for a design
requirements already set forth in our discussion.that incorporates several interfaces is the difficulty in

dealing with data flow checking. A common practice when
The following figures depict two options for scoreboard verifying a design is the use of scoreboarding inside the
placement with respect to the UART eVC. In Figure 2, the drivers/collectors (stubs). However, in a multiple interface
conventional way is reflected with the scoreboard being eVC, it is crucial to maintain the independence and
updated immediately by the drivers. The items generated scalability of the stimuli drivers. This allows for user
are added to the scoreboard and once received, a check extensions or even complete replacement without
is performed. However, in order to avoid driver-degrading or even removing the data and protocol
dependency, the UART eVC deploys the second checking capabilities of the environment.
alternative as depicted in Figure 3. In this solution, the
monitor that stands on the interface gathers the items A solution that offers more flexibility is a scoreboarding
transmitted at each side and examines each transaction scheme that resides in the monitor. In this way, the eVC
independently. The scoreboard can then remain active environment is able to gather the data flow on the
even in the absence of the drivers or when modifications interface level and thus be completely independent of the
are made inside the drivers by the UART user.drivers. This can be achieved because a single eVC deals

with all interfaces and so has access to all the information

UART
DUT

i/f A i/f BProcessor
Driver

check add

Monitor

Scoreboard

Network
Driver

Figure 2: Implementing a device-level integrated scoreboard; data is added/checked by the stimuli drivers

Scoreboard

check add

UART
DUT

i/f A i/f B
Processor

Driver

Monitor

Network
Driver

Figure 3: Implementing a device-level independent scoreboard; data is added and checked by the monitor

This paper presented a variety of uses for an eVC issues arising from this implementation method. The
architecture that goes beyond verifying a single UART eVC was used as an example to describe how to
interface's protocol. When multiple interfaces are overcome some of the obstacles such as cross-timing
incorporated in a single eVC, the designer benefits from constraints, data flow checking and implementation
an increased range of valuable verification checks independence.
resulting in higher quality verification and better time-
effort performance. This paper also presented several

CONCLUSION

Thanasis Oikonomou
is a digital systems
designer at Globetech
Solutions. His interests
a r e i n c o m p u t e r
architecture, high speed
n e t w o r k s y s t e m s ,

verification and testing.
He received an MS and a
BS in Computer Science
from the University of
Crete, Greece.

FPGA/VLSI design,

A g g e l o s I o a n n o u
received his BS and MS
from the University of
Crete, Greece. His
interests include switch
architectures, micro-
processor design and
h i g h p e r f o r m a n c e
networks. He is currently
a d i g i t a l s y s t e m s
designer at Globetech
Solutions, working on
verification of high-
speed ASICs.

Stylianos Diamantidis
is a founding partner of
Globetech Solutions. His
interests lie in the areas
of verification platforms
and IP, design for
testability of complex
systems, and distributed
systems. He holds a
BEng from the University
of Kent, UK, and an MS
in Electrical Engineering
from Stanford University.

For further information, visit

In addition, you can email us at

or call ++1 650 988 6900 (US)
or ++30 23 10 31 35 53 (Europe)

www.globetechsolutions.com

info@globetechsolutions.com © 2002-2003
Globetech Solutions
All Rights Reserved

BIOGRAPHIES

FURTHER
INFORMATION Globetech Solutions is a member of Verisity Inc.’s

Verification Alliance. Please contact us for information
about eVCs and other exciting products and services.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

