
GOOD AND BAD VERIFICATION PLANNING

STEVE BROWN, CADENCE

DO YOU HAVE A PLAN?
Project management is all about planning and
execution. But if everyone properly plans their
verification project, why do quality problems and
schedule slips persist? It really comes down to the
adage, “Begin with the end in mind.” A good plan
contains detailed goals using measurable metrics,
along with optimal resource usage and realistic
schedule estimates.

Managers and their teams engage in planning, yet
the results of that planning process typically do not
address the common problems that cause schedule
slips, resource productivity issues, or product quality.
Most verification plans focus solely on task
performance rather than defining the verification
problem, independent of its solution. This almost
guarantees gaps leading to bug escapes, schedule
delays to fix those bugs, or significant resource strains
and inefficiencies. With a bit of improvement in
planning, we can do much better.

WHY NOT GOOD VERIFICATION
PLANNING?
Most teams don’t do complete verification planning
for two interdependent reasons: they leap to
verification environment development before design
because they are stretched extremely thin. This can
lead to an unchanged or inflexible plan that becomes
irrelevant because there is no easy way to maintain
the relationship with the actual project. In other
words, the verification plan isn’t really a plan; it’s

merely a set of incomplete discussion notes that
atrophy as the project moves forward, as the team
begins working and learns new things about what it
must accomplish.

The solution is to make the verification plan an
executable part of the verification process itself.
A verification plan becomes executable when it is
read by a verification process automation tool,
which organizes and generates reports about project
status and becomes the basis for analyzing data to
determine next steps. The plan’s value is maximized,
serving as the genesis and touchstone of the
verification process throughout the life of the
project. This directly increases the return on
investment in developing and maintaining the
verification plan by automatically using it to measure
verification completeness. Thus, when changes in the
project are necessary, those changes are introduced,
tracked, and measured through the updated,
executable verification plan. This makes the plan a
continuously valuable part of the verification project,
from specification to closure.

Better planning, and using the executable plan to
measure project completion, leads to higher quality,
increased schedule predictability, and improved
resource productivity. With a better plan, it’s easier
for the team to produce the desired results. Using the
plan throughout the project helps surface issues
earlier, which is a key to staying on schedule. Tracking
progress against the plan metrics enables everyone
on the team to self-manage and stay focused, thus
improving productivity.

INCISIVE VERIFICATION ARTICLE
JUNE 2005

Good and Bad Verification Planning Incisive Verification Article — June 2005 | 2

WHAT IS GOOD PLANNING?
Verification planning needs to change from a focus
on how to a focus on what. By starting with the
important goals of what needs to be verified, the
team can ensure the plan is complete and balanced.
The plan in this case is more than an engineering
specification of how the verification is to be
accomplished. It is a unanimous statement about
what the project must accomplish to be successful.
It identifies success criteria in a prioritized fashion —
for example, these features must work; these features
should work in the first release; these features are
nice to have working in the first release, and so on —
and the details on how the success criteria will be
measured, indicating the project has reached closure.

BASICS OF VERIFICATION PLANNING
From a high-level process perspective, verification
planning is actually quite straightforward. The basic
steps of verification planning are:

1. Analyze the device specifications

2. Scope the verification objectives

3. Identify the feature set of the design

4. Design detailed coverage models

5. Select aggregate metrics to track progress

6. Use historical metrics to estimate schedules

Team leaders tend to follow this process in general.
However, they invariably miss at least one critical
aspect of each step. By cutting corners to save time,
they gamble and risk their project. And, more often
than not, they lose the bet.

ANALYZE THE DEVICE SPECIFICATIONS

All projects begin with some (or several forms of)
specifications. Marketing contributes the customer
requirements. Management defines the resources,
schedule, and build versus buy constraints of the
project. Systems engineers, hardware and software
engineers, and verification teams each provide
verification implementation specifications that will
guide the project.

The biggest risk to the project is not anticipating the
moving target. Some teams attempt to capture all
their requirements and then move through the
project sequentially, sometimes called the waterfall
method. In reality, the process is iterative. The risk
comes from not fully anticipating the iterative impact
nor managing the frequency and burden of those
iterations.

SCOPE THE VERIFICATION OBJECTIVES

The most common failure at the scoping stage of the
project is not requiring a comprehensive verification
discussion process with everyone involved. Scoping
and documenting the verification objectives is the
only way to discern whether the specifications were
well conceived and understood. It is terribly
inefficient, and unpredictable, to plan details into a
verification project after it is underway. Management
must allocate a sufficient amount of time upfront to
get the verification goals accurate and complete.
Propagating requirements changes are another
matter and will be discussed in the next section.

All stakeholders must participate in scoping
verification objectives: management, marketing,
systems designers, hardware designers, software
designers, and the verification team. It is only
through team dialog that the full project
requirements emerge. Marketing requirements are
never complete because they only address market-
critical factors. Management resource and schedule
constraints are usually aggressive, by definition, and
must be relaxed as the project is fully scoped. Systems
engineers bring the technical perspective closest to
the marketing requirements. Hardware and software
engineers provide valuable insight on the
implications of implementation. And, the verification
team choreographs the discussion, continuously
challenging the team to find and fill the gaps and

95

50

Scheduled
tapeout

Final
tapeout

Productivity gap

Quality gap

Predictability gap

Desired

Actual

TIME

CONFIDENCE
PERCENTAGE

Figure 1: The verification productivity gap

Executive manager

Report

HW design specialist

Verification
specialist/manager

Software specialist

Systems specialist

Figure 2: Team verification planning

Good and Bad Verification Planning Incisive Verification Article — June 2005 | 3

identify the unverifiable choices: a key design-for-
verification objective. If any of these points of view
are missed, the gaps and risks will remain in the
project, inevitably leading to quality concerns, cost
over-runs, or schedule slips.

IDENTIFY THE FEATURE SET OF THE DESIGN

Good measurement techniques have been an elusive
part of verification. Metrics are the means by which
verification progress is measured. Historically,
engineers have designed tests, implemented checkers,
and used code coverage. Test lists are obsolete as a
metric because they have become too numerous to
specify or implement. Although directed tests are
sometimes easier to write, they simply don’t scale to
the size of today’s systems on chip. Checkers aren’t
appropriate as metrics because they detect erroneous
system behavior rather than record that good
behavior has been observed. And, code coverage is
only loosely correlated with behavior because the
device context of each line of code is not recorded.

Leading electronics teams have identified functional
coverage as the most accurate verification metric.
Using a coverage-driven verification (CDV)
methodology, a team is able to measure how much
real verification they’ve completed, as opposed to
how many (mostly redundant) simulation cycles
they’ve executed. The specification language of
functional coverage is designed to match the
requirements specification captured during the
scoping process. The assertion language in a
coverage specification can also be used to capture
implementation assumptions, part of assertion-based
verification (ABV).

Total coverage is the only means to have a complete
picture of the project’s verification status. Functional
coverage correlates directly to the features. Assertion
coverage relates to functional coverage and to the
implementation integrity. Hardware/software code
coverage tells us how well we have exercised the
design.

DESIGN DETAILED COVERAGE MODELS

The scoping process results in a list of the features to
be verified. The specification must describe those
features so that they can be measured. Coverage is
used to define the metrics of verification, derived
from design features. There are two types of metrics
that result from scoping: explicit specification metrics
and explicit implementation metrics. Explicit
specification metrics are chosen by the engineer
from the specification. Explicit implementation
metrics are chosen by the engineer from the RTL
implementation, once the RTL is available.

The typical failure at this stage of planning is lack of
review of the coverage models. Not only do they
need to be complete enough to represent the full list

of features to be verified, but they also need to be
succinct enough that the tools and the team can
actually accomplish the task within the desired
timeframe. Judgment is crucial: it’s a lot better to
have verified 100% of the most critical functionality
than to have critical functionality lost in a coverage
model that is too detailed.

For a more complete treatment of this topic, refer
to Functional Verification Coverage Measurement
and Analysis by Andrew Piziali (Springer, ISBN 1-4020-
8025-5).

SELECT AGGREGATE METRICS TO TRACK PROGRESS

Management is all about planning and executing.
Tracking progress is the only way to know your team
is executing. The management adage, “You get the
behavior that you measure,” is apropos. The
challenge is selecting the few metrics to track that
are representative of progress and will surface
problems and risks.

Typically, teams will define milestones for a project
to delineate progress. To maximize the effectiveness
of the team, these milestones should be planned such
that they pull forward development of the most
time-critical or high-risk areas of the project. But
verifying a particular feature is no longer sufficient.

Increasingly, teams define milestones that expose
possible system integration issues. They deliver the
right subset of block functionality to enable early
system verification. This requires a fine-grained
definition of features that must be working at each
milestone. By using coverage to define those
features, and by carefully defining and tracking
milestones that collect a system subset of features,
the project milestone becomes important for much
more than simply marking a box in the schedule as
complete. It truly reduces quality and schedule risk in
the project.

Other manually tracked milestones include first
working simulations, as well as generation, checking,
and coverage model completion. Also known as
implementation tracking, anticipating and achieving
these two milestones often befuddle teams first
adopting coverage-driven verification. An executable
verification plan can specify the conditions for each,
improving the predictability of these critical early
stages of a project.

USE HISTORICAL METRICS TO ESTIMATE SCHEDULES

Creating engineering schedules is an art. It reflects
the team’s experience with project planning and
recalling how much time they spent on similar tasks
in the past. Any act of engineering that jumps to
the answer is an art. As more metrics are used in
functional verification, the art of schedule estimation
is becoming more an act of engineering, where the
process is visible.

• Checkers and assertions to detect and report
specification violations

• Stimulus generation

Several benefits arise from better verification
planning and using an executable verification plan:

IMPROVED PRODUCT QUALITY

It is easy to see that good planning = good quality.
Every customer we’ve helped to improve verification
planning shares a story of the bug they discovered
following this process. Even for projects well under
way, the value of rigorous verification planning is
clear. In some cases, the biggest value is creating a
common process and nomenclature for planning.

SCHEDULE PREDICTABILITY

Improved schedule predictability derives from more
accurate work estimates and earlier visibility to
deviations from the plan. Detailed milestones help
surface crucial problems earlier, giving the team an
opportunity to work through the challenges in the
normal course of the project.

TEAM PRODUCTIVITY

An executable verification plan helps the team
communicate more efficiently as well as focus on
critical issues more easily. Standard reporting
increases team and management effectiveness,
keeping resources focused on the most crucial tasks.

CONCLUSIONS

With this picture, “good” verification planning can
be defined as using the input of all stakeholders to
capture and review the verification plan; using
historical metrics and a formulaic model to estimate
schedules and drive the whole verification project,
from specification to closure; and using an executable
verification plan.

Good and Bad Verification Planning Incisive Verification Article — June 2005 | 4

The challenge is that few teams have captured
metrics in the past. Nor have they invested in creating
a model whereby a schedule can be quantified and
estimated. Some of our more sophisticated customers
are tracking additional metrics, beyond coverage,
to improve their schedule-estimating accuracy.

The metrics they’re tracking measure time for
implementing, debugging, and integrating each level
and abstraction of IP in the design and verification
environment, with data points for varying sizes of IP.
They also estimate the impact of developing new IP
versus re-use, the impact of engineering experience
and skill, and the tradeoff between verification
process automation and manual verification
management. They look at hardware and software,
as well as block-, chip-, and system-level scopes.

Without actual historical metrics, the team can
estimate these metrics. Today’s schedules are
estimates of the tasks, rather than of the metrics
themselves. By breaking the estimates down to one
more level of detail, the team discovers assumptions
in their reasoning. They also create detail against
which each individual can track their own work.

They can then construct a model or equation that
uses these historical metrics and the current project
estimates to generate detailed project schedules.
These estimates and the model itself are then
debated for their accuracy and a project schedule
commitment can be made from the schedule
estimate. With the right kind of automation
software, the overall project, task, and detailed
metrics can be compared against these estimates
and captured for the benefit of the next project.

CHANGING REQUIREMENTS
Every engineer knows that requirements always
change. Delaying planning does not alter this reality.
Many electronics products now serve consumer
markets that are more closely tied to the season than
to the completion of a project. Managers have long
sought to control the change process to make
projects more predictable. The big question is,
“How late can we introduce a change and release
a quality product on schedule?”

BENEFITS OF AN EXECUTABLE
VERIFICATION PLAN
The historical verification plan is a crucial part of the
automation mechanism for driving and managing
verification from specification to closure. The
components of an automated verification mechanism
are:

• Executable verification plan

• Coverage and assertions to measure verification
progress

Plan

Project
managerReact

Measure

Execute

Plan

Better
planning

Increased
visibility

Optimized
resource
utilization

Better
decisions

Figure 3: An executable plan drives the verification process

